Page 1

Displaying 1 – 9 of 9

Showing per page

Permutations preserving sums of rearranged real series

Roman Wituła (2013)

Open Mathematics

The aim of this paper is to discuss one of the most interesting and unsolved problems of the real series theory: rearrangements that preserve sums of series. Certain hypothesis about combinatorial description of the corresponding permutations is presented and basic algebraic properties of the family 𝔖 0 , introduced by it, are investigated.

Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci

Nataliya Chekhova, Pascal Hubert, Ali Messaoudi (2001)

Journal de théorie des nombres de Bordeaux

Nous étudions certaines propriétés combinatoires, ergodiques et arithmétiques du point fixe de la substitution de Tribonacci (introduite par G. Rauzy) et de la rotation du tore 𝕋 2 qui lui est associée. Nous établissons une généralisation géométrique du théorème des trois distances et donnons une formule explicite pour la fonction de récurrence du point fixe. Nous donnons des propriétés d’approximation diophantienne du vecteur de la rotation de 𝕋 2 : nous montrons, que pour une norme adaptée, la suite...

Currently displaying 1 – 9 of 9

Page 1