Isols and balanced block designs with
V tomto článku se zabýváme návazností populární karetní hry dobble na kombinatorické struktury. Ukazujeme, že existence dokonalých balíčků karet souvisí s existencí konečných projektivních rovin a systémů ortogonálních latinských čtverců. Dále pomocí obecnější struktury, blokových schémat, diskutujeme možnosti vytváření balíčků karet pro hry s modifikovanými pravidly. Výklad, příklady i přílohy jsou uzpůsobeny tomu, aby si čtenář mohl relativně jednoduše vytvořit vlastní karetní systémy.
* This work was partially supported by the Bulgarian National Science Fund under Contract No. MM – 503/1995.New extremal binary self-dual codes of lengths 50 and 52 are constructed. Some of them are the first known codes with such weight enumerators. The structure of their automorphisms groups are shown.
∗ This work has been partially supported by the Bulgarian NSF under Contract No. I-506/1995.In this note we construct five new symmetric 2-(61,16,4) designs invariant under the dihedral group of order 10. As a by-product we obtain 25 new residual 2-(45,12,4) designs. The automorphism groups of all new designs are computed.
All the symmetric balanced incomplete block (SBIB) designs have been characterized and a new generalized expression on parameters of SBIB designs has been obtained. The parameter b has been formulated in a different way which is denoted by bi, i = 1, 2, 3, associating with the types of the SBIB design Di. The parameters of all the designs obtained through this representation have been tabulated while corresponding them with the suitable formulae for the number ofblocks bi and the expression Si for...