Displaying 101 – 120 of 141

Showing per page

Power indices of trace zero symmetric Boolean matrices

Bo Zhou (2004)

Discussiones Mathematicae - General Algebra and Applications

The power index of a square Boolean matrix A is the least integer d such that Ad is a linear combination of previous nonnegative powers of A. We determine the maximum power indices for the class of n×n primitive symmetric Boolean matrices of trace zero, the class of n×n irreducible nonprimitive symmetric Boolean matrices, and the class of n×n reducible symmetric Boolean matrices of trace zero, and characterize the extreme matrices respectively.

Ranks of permutative matrices

Xiaonan Hu, Charles R. Johnson, Caroline E. Davis, Yimeng Zhang (2016)

Special Matrices

A new type of matrix, termed permutative, is defined and motivated herein. The focus is upon identifying circumstances under which square permutative matrices are rank deficient. Two distinct ways, along with variants upon them are given. These are a special kind of grouping of rows and a type of partition in which the blocks are again permutative. Other, results are given, along with some questions and conjectures.

Standard monomials for q-uniform families and a conjecture of Babai and Frankl

Gábor Hegedűs, Lajos Rónyai (2003)

Open Mathematics

Let n, k, α be integers, n, α>0, p be a prime and q=p α. Consider the complete q-uniform family k , q = K n : K k ( m o d q ) We study certain inclusion matrices attached to F(k,q) over the field 𝔽 p . We show that if l≤q−1 and 2l≤n then r a n k 𝔽 p I ( ( k , q ) , n ) n This extends a theorem of Frankl [7] obtained for the case α=1. In the proof we use arguments involving Gröbner bases, standard monomials and reduction. As an application, we solve a problem of Babai and Frankl related to the size of some L-intersecting families modulo q.

Symmetric Hadamard matrices of order 116 and 172 exist

Olivia Di Matteo, Dragomir Ž. Ðoković, Ilias S. Kotsireas (2015)

Special Matrices

We construct new symmetric Hadamard matrices of orders 92, 116, and 172. While the existence of those of order 92 was known since 1978, the orders 116 and 172 are new. Our construction is based on a recent new combinatorial array (GP array) discovered by N. A. Balonin and J. Seberry. For order 116 we used an adaptation of an algorithm for parallel collision search. The adaptation pertains to the modification of some aspects of the algorithm to make it suitable to solve a 3-way matching problem....

Currently displaying 101 – 120 of 141