Page 1 Next

Displaying 1 – 20 of 22

Showing per page

Some combinatorics involving ξ-large sets

Teresa Bigorajska, Henryk Kotlarski (2002)

Fundamenta Mathematicae

We prove a version of the Ramsey theorem for partitions of (increasing) n-tuples. We derive this result from a version of König's infinity lemma for ξ-large trees. Here ξ < ε₀ and the notion of largeness is in the sense of Hardy hierarchy.

Some Ramsey type theorems for normed and quasinormed spaces

C. Henson, Nigel Kalton, N. Peck, Ignác Tereščák, Pavol Zlatoš (1997)

Studia Mathematica

We prove that every bounded, uniformly separated sequence in a normed space contains a “uniformly independent” subsequence (see definition); the constants involved do not depend on the sequence or the space. The finite version of this result is true for all quasinormed spaces. We give a counterexample to the infinite version in L p [ 0 , 1 ] for each 0 < p < 1. Some consequences for nonstandard topological vector spaces are derived.

Standard monomials for q-uniform families and a conjecture of Babai and Frankl

Gábor Hegedűs, Lajos Rónyai (2003)

Open Mathematics

Let n, k, α be integers, n, α>0, p be a prime and q=p α. Consider the complete q-uniform family k , q = K n : K k ( m o d q ) We study certain inclusion matrices attached to F(k,q) over the field 𝔽 p . We show that if l≤q−1 and 2l≤n then r a n k 𝔽 p I ( ( k , q ) , n ) n This extends a theorem of Frankl [7] obtained for the case α=1. In the proof we use arguments involving Gröbner bases, standard monomials and reduction. As an application, we solve a problem of Babai and Frankl related to the size of some L-intersecting families modulo q.

Subgraph densities in hypergraphs

Yuejian Peng (2007)

Discussiones Mathematicae Graph Theory

Let r ≥ 2 be an integer. A real number α ∈ [0,1) is a jump for r if for any ε > 0 and any integer m ≥ r, any r-uniform graph with n > n₀(ε,m) vertices and density at least α+ε contains a subgraph with m vertices and density at least α+c, where c = c(α) > 0 does not depend on ε and m. A result of Erdös, Stone and Simonovits implies that every α ∈ [0,1) is a jump for r = 2. Erdös asked whether the same is true for r ≥ 3. Frankl and Rödl gave a negative answer by showing an infinite sequence...

Currently displaying 1 – 20 of 22

Page 1 Next