Determinantal expression and recursion for Jack polynomials.
We find the transition kernels for four markovian interacting particle systems on the line, by proving that each of these kernels is intertwined with a Karlin–McGregor-type kernel. The resulting kernels all inherit the determinantal structure from the Karlin–McGregor formula, and have a similar form to Schütz’s kernel for the totally asymmetric simple exclusion process.
L'operatore di differenze multivariate è utilizzato per stabilire varie formule di somme riguardanti le funzioni simmetriche, le quali hanno uno stretto legame con le identità del «termine costante».