Tensorial square of the hyperoctahedral group coinvariant space.
We consider the multiple ellipses detection problem on the basis of a data points set coming from a number of ellipses in the plane not known in advance, whereby an ellipse is viewed as a Mahalanobis circle with center , radius , and some positive definite matrix . A very efficient method for solving this problem is proposed. The method uses a modification of the -means algorithm for Mahalanobis-circle centers. The initial approximation consists of the set of circles whose centers are determined...
We give a presentation (in terms of generators and relations) of the ring of multisymmetric functions that holds for any commutative ring , thereby answering a classical question coming from works of F. Junker [J1, J2, J3] in the late nineteen century and then implicitly in H. Weyl book “The classical groups” [W].
We show that the explicit formula of Stanley-Féray-Śniady for the characters of the symmetric group has a natural extension to the generalized characters. These are the spherical functions of the unbalanced Gel’fand pair .
We give the Thom polynomials for the singularities associated with maps with parameter . Our computations combine the characterization of Thom polynomials via the “method of restriction equations” of Rimanyi et al. with the techniques of Schur functions.
We give a closed formula for the Thom polynomials of the singularities in terms of Schur functions. Our computations combine the characterization of the Thom polynomials via the “method of restriction equations” of Rimányi et al. with the techniques of Schur functions.