Tableau cycling and Catalan numbers.
We give a description of faces, of all codimensions, for the cones spanned by the set of weights associated to the rings of semi-invariants of quivers. For a triple flag quiver and its faces of codimension 1 this description reduces to the result of Knutson-Tao-Woodward on the facets of the Klyachko cone. We give new applications to Littlewood-Richardson coefficients, including a product formula for LR-coefficients corresponding to triples of partitions lying on a wall of the Klyachko cone. We systematically...
The Dynkin algebras are the hereditary artin algebras of finite representation type. The paper determines the number of complete exceptional sequences for any Dynkin algebra. Since the complete exceptional sequences for a Dynkin algebra of Dynkin type Δ correspond bijectively to the maximal chains in the lattice of non-crossing partitions of type Δ, the calculations presented here may also be considered as a categorification of the corresponding result for non-crossing partitions.