On limits in complete semirings.
By studying dimensional types of metric scattered spaces, we consider the wider class of metric σ-discrete spaces. Applying techniques relevant to this wider class, we present new proofs of some embeddable properties of countable metric spaces in such a way that they can be generalized onto uncountable metric scattered spaces. Related topics are also explored, which gives a few new results.
The paper deals with the characterization of ordered sets by means of ternary semigroups of homomorphisms of ordered sets.
Let (C,R) be the countable dense circular ordering, and G its automorphism group. It is shown that certain properties of group elements are first order definable in G, and these results are used to reconstruct C inside G, and to demonstrate that its outer automorphism group has order 2. Similar statements hold for the completion C̅.
In this paper, the structures of collection of pronormal subgroups of dicyclic, symmetric and alternating groups are studied in respect of formation of lattices and sublattices of . It is proved that the collections of all pronormal subgroups of and S do not form sublattices of respective and , whereas the collection of all pronormal subgroups of a dicyclic group is a sublattice of . Furthermore, it is shown that and ) are lower semimodular lattices.