La struttura delle relazioni «molto maggiore» e «molto minore» nel calcolo approssimato
A dcpo is continuous if and only if the lattice of all Scott-closed subsets of is completely distributive. However, in the case where is a non-continuous dcpo, little is known about the order structure of . In this paper, we study the order-theoretic properties of for general dcpo’s . The main results are: (i) every is C-continuous; (ii) a complete lattice is isomorphic to for a complete semilattice if and only if is weak-stably C-algebraic; (iii) for any two complete semilattices...
A construction is given which makes it possible to find all linear extensions of a given ordered set and, conversely, to find all orderings on a given set with a prescribed linear extension. Further, dense subsets of ordered sets are studied and a procedure is presented which extends a linear extension constructed on a dense subset to the whole set.
Let G be an abelian group acting on a set X, and suppose that no element of G has any finite orbit of size greater than one. We show that every partial order on X invariant under G extends to a linear order on X also invariant under G. We then discuss extensions to linear preorders when the orbit condition is not met, and show that for any abelian group acting on a set X, there is a linear preorder ≤ on the powerset 𝓟X invariant under G and such that if A is a proper subset of B, then A < B...