Displaying 101 – 120 of 137

Showing per page

Primes, coprimes and multiplicative elements

Melvin F. Janowitz, Robert C. Powers, Thomas Riedel (1999)

Commentationes Mathematicae Universitatis Carolinae

The purpose of this paper is to study conditions under which the restriction of a certain Galois connection on a complete lattice yields an isomorphism from a set of prime elements to a set of coprime elements. An important part of our study involves the set on which the way-below relation is multiplicative.

Restricted ideals and the groupability property. Tools for temporal reasoning

J. Martínez, P. Cordero, G. Gutiérrez, I. P. de Guzmán (2003)

Kybernetika

In the field of automatic proving, the study of the sets of prime implicants or implicates of a formula has proven to be very important. If we focus on non-classical logics and, in particular, on temporal logics, such study is useful even if it is restricted to the set of unitary implicants/implicates [P. Cordero, M. Enciso, and I. de Guzmán: Structure theorems for closed sets of implicates/implicants in temporal logic. (Lecture Notes in Artificial Intelligence 1695.) Springer–Verlag, Berlin 1999]....

Rotations of λ -lattices

Jiří Karásek (1996)

Mathematica Bohemica

In [2], J. Klimes studied rotations of lattices. The aim of the paper is to research rotations of the so-called l -lattices introduced in [3] by V. Snasel.

Supremum properties of Galois-type connections

Árpád Száz (2006)

Commentationes Mathematicae Universitatis Carolinae

In a former paper, motivated by a recent theory of relators (families of relations), we have investigated increasingly regular and normal functions of one preordered set into another instead of Galois connections and residuated mappings of partially ordered sets. A function f of one preordered set X into another Y has been called (1) increasingly   g -normal, for some function g of Y into X , if for any x X and y Y we have f ( x ) y if and only if x g ( y ) ; (2) increasingly ϕ -regular, for some function ϕ of X into itself,...

Symmetric difference on orthomodular lattices and Z 2 -valued states

Milan Matoušek, Pavel Pták (2009)

Commentationes Mathematicae Universitatis Carolinae

The investigation of orthocomplemented lattices with a symmetric difference initiated the following question: Which orthomodular lattice can be embedded in an orthomodular lattice that allows for a symmetric difference? In this paper we present a necessary condition for such an embedding to exist. The condition is expressed in terms of Z 2 -valued states and enables one, as a consequence, to clarify the situation in the important case of the lattice of projections in a Hilbert space.

Currently displaying 101 – 120 of 137