Displaying 81 – 100 of 144

Showing per page

On duality of submodule lattices

Gábor Czédli, Géza Takách (2000)

Discussiones Mathematicae - General Algebra and Applications

An elementary proof is given for Hutchinson's duality theorem, which states that if a lattice identity λ holds in all submodule lattices of modules over a ring R with unit element then so does the dual of λ.

On strong uniform dimension of locally finite groups

A. Sakowicz (2003)

Colloquium Mathematicae

We give the description of locally finite groups with strongly balanced subgroup lattices and we prove that the strong uniform dimension of such groups exists. Moreover we show how to determine this dimension.

On the existence of super-decomposable pure-injective modules over strongly simply connected algebras of non-polynomial growth

Stanisław Kasjan, Grzegorz Pastuszak (2014)

Colloquium Mathematicae

Assume that k is a field of characteristic different from 2. We show that if Γ is a strongly simply connected k-algebra of non-polynomial growth, then there exists a special family of pointed Γ-modules, called an independent pair of dense chains of pointed modules. Then it follows by a result of Ziegler that Γ admits a super-decomposable pure-injective module if k is a countable field.

On the rhomboidal heredity in ideal lattices

Ladislav Beran (1992)

Commentationes Mathematicae Universitatis Carolinae

We show that the class of principal ideals and the class of semiprime ideals are rhomboidal hereditary in the class of modular lattices. Similar results are presented for the class of ideals with forbidden exterior quotients and for the class of prime ideals.

On uniform dimensions of finite groups

J. Krempa, A. Sakowicz (2001)

Colloquium Mathematicae

Let G be any finite group and L(G) the lattice of all subgroups of G. If L(G) is strongly balanced (globally permutable) then we observe that the uniform dimension and the strong uniform dimension of L(G) are well defined, and we show how to calculate these dimensions.

Orthogonality and complementation in the lattice of subspaces of a finite vector space

Ivan Chajda, Helmut Länger (2022)

Mathematica Bohemica

We investigate the lattice 𝐋 ( 𝐕 ) of subspaces of an m -dimensional vector space 𝐕 over a finite field GF ( q ) with a prime power q = p n together with the unary operation of orthogonality. It is well-known that this lattice is modular and that the orthogonality is an antitone involution. The lattice 𝐋 ( 𝐕 ) satisfies the chain condition and we determine the number of covers of its elements, especially the number of its atoms. We characterize when orthogonality is a complementation and hence when 𝐋 ( 𝐕 ) is orthomodular. For...

Currently displaying 81 – 100 of 144