On the De Morgan formulae and the antitony of complements in lattices
In this article, a theorem is proved asserting that any linear functional defined on a JBW-algebra admits a Lebesque decomposition with respect to any normal state defined on the algebra. Then we show that the positivity (and the unicity) of this decomposition is insured for the trace states defined on the algebra. In fact, this property can be used to give a new characterization of the trace states amoungst all the normal states.
Let P be an orthomodular poset and let B be a Boolean subalgebra of P. A mapping s:P → ⟨0,1⟩ is said to be a centrally additive B-state if it is order preserving, satisfies s(a') = 1 - s(a), is additive on couples that contain a central element, and restricts to a state on B. It is shown that, for any Boolean subalgebra B of P, P has an abundance of two-valued centrally additive B-states. This answers positively a question raised in [13, Open question, p. 13]. As a consequence one obtains a somewhat...
The probability of the occurrence of an event pertaining to a physical system which is observed in different states determines a function from the set of states of the system to . The function is called a numerical event or multidimensional probability. When appropriately structured, sets of numerical events form so-called algebras of -probabilities. Their main feature is that they are orthomodular partially ordered sets of functions with an inherent full set of states. A classical...
The algebraic theory of quantum logics overlaps in places with certain areas of cybernetics, notably with the field of artificial intelligence (see, e. g., [19, 20]). Recently an effort has been exercised to advance with logics that possess a symmetric difference ([13, 14]) - with so called orthocomplemented difference lattices (ODLs). This paper further contributes to this effort. In [13] the author constructs an ODL that is not set-representable. This example is quite elaborate. A main result...
We investigate the lattice of subspaces of an -dimensional vector space over a finite field with a prime power together with the unary operation of orthogonality. It is well-known that this lattice is modular and that the orthogonality is an antitone involution. The lattice satisfies the chain condition and we determine the number of covers of its elements, especially the number of its atoms. We characterize when orthogonality is a complementation and hence when is orthomodular. For...