Displaying 21 – 40 of 75

Showing per page

On fields and ideals connected with notions of forcing

W. Kułaga (2006)

Colloquium Mathematicae

We investigate an algebraic notion of decidability which allows a uniform investigation of a large class of notions of forcing. Among other things, we show how to build σ-fields of sets connected with Laver and Miller notions of forcing and we show that these σ-fields are closed under the Suslin operation.

On generalized derivations of partially ordered sets

Ahmed Y. Abdelwanis, Abdelkarim Boua (2019)

Communications in Mathematics

Let P be a poset and d be a derivation on P . In this research, the notion of generalized d -derivation on partially ordered sets is presented and studied. Several characterization theorems on generalized d -derivations are introduced. The properties of the fixed points based on the generalized d -derivations are examined. The properties of ideals and operations related with generalized d -derivations are studied.

On linear operators strongly preserving invariants of Boolean matrices

Yizhi Chen, Xian Zhong Zhao (2012)

Czechoslovak Mathematical Journal

Let 𝔹 k be the general Boolean algebra and T a linear operator on M m , n ( 𝔹 k ) . If for any A in M m , n ( 𝔹 k ) ( M n ( 𝔹 k ) , respectively), A is regular (invertible, respectively) if and only if T ( A ) is regular (invertible, respectively), then T is said to strongly preserve regular (invertible, respectively) matrices. In this paper, we will give complete characterizations of the linear operators that strongly preserve regular (invertible, respectively) matrices over 𝔹 k . Meanwhile, noting that a general Boolean algebra 𝔹 k is isomorphic...

On Marczewski-Burstin representable algebras

Marek Balcerzak, Artur Bartoszewicz, Piotr Koszmider (2004)

Colloquium Mathematicae

We construct algebras of sets which are not MB-representable. The existence of such algebras was previously known under additional set-theoretic assumptions. On the other hand, we prove that every Boolean algebra is isomorphic to an MB-representable algebra of sets.

On maximal QROBDD’s of boolean functions

Jean-Francis Michon, Jean-Baptiste Yunès, Pierre Valarcher (2005)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We investigate the structure of “worst-case” quasi reduced ordered decision diagrams and Boolean functions whose truth tables are associated to: we suggest different ways to count and enumerate them. We, then, introduce a notion of complexity which leads to the concept of “hard” Boolean functions as functions whose QROBDD are “worst-case” ones. So we exhibit the relation between hard functions and the Storage Access function (also known as Multiplexer).

On maximal QROBDD's of Boolean functions

Jean-Francis Michon, Jean-Baptiste Yunès, Pierre Valarcher (2010)

RAIRO - Theoretical Informatics and Applications

We investigate the structure of “worst-case” quasi reduced ordered decision diagrams and Boolean functions whose truth tables are associated to: we suggest different ways to count and enumerate them. We, then, introduce a notion of complexity which leads to the concept of “hard” Boolean functions as functions whose QROBDD are “worst-case” ones. So we exhibit the relation between hard functions and the Storage Access function (also known as Multiplexer).

On minimal spectrum of multiplication lattice modules

Sachin Ballal, Vilas Kharat (2019)

Mathematica Bohemica

We study the minimal prime elements of multiplication lattice module M over a C -lattice L . Moreover, we topologize the spectrum π ( M ) of minimal prime elements of M and study several properties of it. The compactness of π ( M ) is characterized in several ways. Also, we investigate the interplay between the topological properties of π ( M ) and algebraic properties of M .

On Monk’s questions

Saharon Shelah (1996)

Fundamenta Mathematicae

We deal with Boolean algebras and their cardinal functions: π-weight π and π-character πχ. We investigate the spectrum of π-weights of subalgebras of a Boolean algebra B. Next we show that the π-character of an ultraproduct of Boolean algebras may be different from the ultraproduct of the π-characters of the factors.

Currently displaying 21 – 40 of 75