Some remarks on Post algebras
The article continues the formalization of the lattice theory (as structures with two binary operations, not in terms of ordering relations). In the paper, the notion of a pseudocomplement in a lattice is formally introduced in Mizar, and based on this we define the notion of the skeleton and the set of dense elements in a pseudocomplemented lattice, giving the meet-decomposition of arbitrary element of a lattice as the infimum of two elements: one belonging to the skeleton, and the other which...
We show that all finite Brouwerian semilattices have strong endomorphism kernel property (SEKP), give a new proof that all finite relative Stone algebras have SEKP and also fully characterize dual generalized Boolean algebras which possess SEKP.
A De Morgan quasilattice is an algebra satisfying hyperidentities of the variety of De Morgan algebras (lattices). In this paper we give a functional representation of the free n-generated De Morgan quasilattice with two binary and one unary operations. Namely, we define the concept of super-De Morgan function and prove that the free De Morgan quasilattice with two binary and one unary operations on nfree generators is isomorphic to the De Morgan quasilattice of super-De Morgan functions of nvariables....