Fuzzy neighborhood structures on partially ordered groups.
We denote by the class of all cardinals; put . Let be a class of algebraic systems. A generalized cardinal property on is defined to be a rule which assings to each an element of such that, whenever and , then . In this paper we are interested mainly in the cases when (i) is the class of all bounded lattices having more than one element, or (ii) is a class of lattice ordered groups.
A semigroup is called a generalized -semigroup if there exists a group congruence on such that the identity class contains a greatest element with respect to the natural partial order of . Using the concept of an anticone, all partially ordered groups which are epimorphic images of a semigroup are determined. It is shown that a semigroup is a generalized -semigroup if and only if contains an anticone, which is a principal order ideal of . Also a characterization by means of the structure...
This paper deals with the invariant sets in the group of isometries of a lattice-ordered group. It is shown that all the invariant sets are union of some transitivity subsets of the spheres.