Page 1

Displaying 1 – 6 of 6

Showing per page

A metrizable completely regular ordered space

Hans-Peter A. Künzi, Stephen W. Watson (1994)

Commentationes Mathematicae Universitatis Carolinae

We construct a completely regular ordered space ( X , 𝒯 , ) such that X is an I -space, the topology 𝒯 of X is metrizable and the bitopological space ( X , 𝒯 , 𝒯 ) is pairwise regular, but not pairwise completely regular. (Here 𝒯 denotes the upper topology and 𝒯 the lower topology of X .)

A principal topology obtained from uninorms

Funda Karaçal, Tuncay Köroğlu (2022)

Kybernetika

We obtain a principal topology and some related results. We also give some hints of possible applications. Some mathematical systems are both lattice and topological space. We show that a topology defined on the any bounded lattice is definable in terms of uninorms. Also, we see that these topologies satisfy the condition of the principal topology. These topologies can not be metrizable except for the discrete metric case. We show an equivalence relation on the class of uninorms on a bounded lattice...

Currently displaying 1 – 6 of 6

Page 1