Graphical Compositions and Weak Congruences
Green's relations and their generalizations on semigroups are useful in studying regular semigroups and their generalizations. In this paper, we first give a brief survey of this topic. We then give some examples to illustrate some special properties of generalized Green's relations which are related to completely regular semigroups and abundant semigroups.
We show that group conjugation generates a proper subvariety of left distributive idempotent groupoids. This subvariety coincides with the variety generated by all cancellative left distributive groupoids.
By a relational system we mean a couple where is a set and is a binary relation on , i.e. . To every directed relational system we assign a groupoid on the same base set where if and only if . We characterize basic properties of by means of identities satisfied by and show how homomorphisms between those groupoids are related to certain homomorphisms of relational systems.