EDZ-varieties: The Schreier property and epimorphisms onto
The eigenproblem of a circulant matrix in max-min algebra is investigated. Complete characterization of the eigenspace structure of a circulant matrix is given by describing all possible types of eigenvectors in detail.
Dans les sciences de la nature, et en particulier dans les sciences du comportement, on rencontre fréquemment des relations caractérisées par des propriétés locales. Une famille très vaste de telles relations rassemble celles qui sont définies uniquement par des propriétés portant sur les ensembles d'éléments liés à un même élément, soit par la relation («points vus d'un même point»), soit par son inverse («points d'où l'on voit un même point»). A tout type de relation correspondent ainsi plusieurs...
Denote by PSelf Ω (resp., Self Ω) the partial (resp., full) transformation monoid over a set Ω, and by Sub V (resp., End V) the collection of all subspaces (resp., endomorphisms) of a vector space V. We prove various results that imply the following: (1) If card Ω ≥ 2, then Self Ω has a semigroup embedding into the dual of Self Γ iff . In particular, if Ω has at least two elements, then there exists no semigroup embedding from Self Ω into the dual of PSelf Ω. (2) If V is infinite-dimensional, then...
A mode (idempotent and entropic algebra) is a Lallement sum of its cancellative submodes over a normal band if it has a congruence with a normal band quotient and cancellative congruence classes. We show that such a sum embeds as a subreduct into a semimodule over a certain ring, and discuss some consequences of this fact. The result generalizes a similar earlier result of the authors proved in the case when the normal band is a semilattice.
A group has the endomorphism kernel property (EKP) if every congruence relation on is the kernel of an endomorphism on . In this note we show that all finite abelian groups have EKP and we show infinite series of finite non-abelian groups which have EKP.