Quadratic Level Quasigroup Equations With Four Variables II: the Lattice of Varieties
We prove that finite flat digraph algebras and, more generally, finite compatible flat algebras satisfying a certain condition are finitely -based (possess a finite basis for their quasiequations). We also exhibit an example of a twelve-element compatible flat algebra that is not finitely -based.
Let be a group, and be a semi-Hopf -algebra. We first show that the category of left -modules over is a monoidal category with a suitably defined tensor product and each element in induces a strict monoidal functor from to itself. Then we introduce the concept of quasitriangular semi-Hopf -algebra, and show that a semi-Hopf -algebra is quasitriangular if and only if the category is a braided monoidal category and is a strict braided monoidal functor for any . Finally,...
Two properties of the lattice of quasivarieties of pseudocomplemented semilattices are established, namely, in the quasivariety generated by the 3-element chain, there is a sublattice freely generated by ω elements and there are quasivarieties.
A. M. Bica has constructed in [6] two isomorphic Abelian groups, defined on quotient sets of the set of those unimodal fuzzy numbers which have strictly monotone and continuous sides. In this paper, we extend the results of above mentioned paper, to a larger class of fuzzy numbers, by adding the flat fuzzy numbers. Furthermore, we add the topological structure and we characterize the constructed quotient groups, by using the set of the continuous functions with bounded variation, defined on .
Relational systems containing one binary relation are investigated. Quotient relational systems are introduced and some of their properties are characterized. Moreover, homomorphisms, strong mappings and cone preserving mappings are introduced and the interplay between these notions is considered. Finally, the connection between directed relational systems and corresponding groupoids is investigated.