Large classes of functionally complete groupoids I.
We consider partial abelian monoids, in particular generalized effect algebras. From the given structures, we construct new ones by introducing a new operation , which is given by restriction of the original partial operation + with respect to a special subset called preideal. We bring some derived properties and characterizations of these new built structures, supporting the results by illustrative examples.
The aim of the present paper is to translate some algebraic concepts to hypergraphs. Thus we obtain a new language, very useful in the investigation of subalgebra lattices of partial, and also total, algebras. In this paper we solve three such problems on subalgebra lattices, other will be solved in [[Pio4]]. First, we show that for two arbitrary partial algebras, if their directed hypergraphs are isomorphic, then their weak, relative and strong subalgebra lattices are isomorphic. Secondly, we prove...
In the present paper we introduce the notion of an ideal of a partial monounary algebra. Further, for an ideal of a partial monounary algebra we define the quotient partial monounary algebra . Let , be partial monounary algebras. We describe all partial monounary algebras such that is an ideal of and is isomorphic to .
In recent papers, S. N. Begum and A. S. A. Noor have studied join partial semilattices (JP-semilattices) defined as meet semilattices with an additional partial operation (join) satisfying certain axioms. We show why their axiom system is too weak to be a satisfactory basis for the authors' constructions and proofs, and suggest an additional axiom for these algebras. We also briefly compare axioms of JP-semilattices with those of nearlattices, another kind of meet semilattices with a partial join...
In the present paper we generalize a few algebraic concepts to graphs. Applying this graph language we solve some problems on subalgebra lattices of unary partial algebras. In this paper three such problems are solved, other will be solved in papers [Pió I], [Pió II], [Pió III], [Pió IV]. More precisely, in the present paper first another proof of the following algebraic result from [Bar1] is given: for two unary partial algebras and , their weak subalgebra lattices are isomorphic if and only...