Decidability problems for the variety generated by tournaments.
We continue the study of directoid groups, directed abelian groups equipped with an extra binary operation which assigns an upper bound to each ordered pair subject to some natural restrictions. The class of all such structures can to some extent be viewed as an equationally defined substitute for the class of (2-torsion-free) directed abelian groups. We explore the relationship between the two associated categories, and some aspects of ideals of directoid groups.
The theory of discriminator algebras and varieties has been investigated extensively, and provides us with a wealth of information and techniques applicable to specific examples of such algebras and varieties. Here we give several such examples for Boolean algebras with a residuated binary operator, abbreviated as r-algebras. More specifically, we show that all finite r-algebras, all integral r-algebras, all unital r-algebras with finitely many elements below the unit, and all commutative residuated...
Any finitely generated regular variety of distributive double -algebras is finitely determined, meaning that for some finite cardinal , any subclass of algebras with isomorphic endomorphism monoids has fewer than pairwise non-isomorphic members. This result follows from our structural characterization of those finitely generated almost regular varieties which are finitely determined. We conjecture that any finitely generated, finitely determined variety of distributive double -algebras...
It is shown how Lawvere's one-to-one translation between Birkhoff's description of varieties and the categorical one (see [6]) turns Hu's theorem on varieties generated by a primal algebra (see [4], [5]) into a simple reformulation of the classical representation theorem of finite Boolean algebras as powerset algebras.