On nondistributive Steiner quasigroups
A well known result of R. Dedekind states that a lattice is nonmodular if and only if it has a sublattice isomorphic to . Similarly a lattice is nondistributive if and only if it has a sublattice isomorphic to or (see [11]). Recently a few results in this spirit were obtained involving the number of polynomials of an algebra (see e.g. [1], [3], [5], [6]). In this paper we prove that a nondistributive Steiner quasigroup (G,·) has at least 21 essentially ternary polynomials (which improves the...