Displaying 41 – 60 of 149

Showing per page

Orthomodular lattices with fully nontrivial commutators

Milan Matoušek (1992)

Commentationes Mathematicae Universitatis Carolinae

An orthomodular lattice L is said to have fully nontrivial commutator if the commutator of any pair x , y L is different from zero. In this note we consider the class of all orthomodular lattices with fully nontrivial commutators. We show that this class forms a quasivariety, we describe it in terms of quasiidentities and situate important types of orthomodular lattices (free lattices, Hilbertian lattices, etc.) within this class. We also show that the quasivariety in question is not a variety answering...

Orthomodular lattices with state-separated noncompatible pairs

R. Mayet, Pavel Pták (2000)

Czechoslovak Mathematical Journal

In the logico-algebraic foundation of quantum mechanics one often deals with the orthomodular lattices (OML) which enjoy state-separating properties of noncompatible pairs (see e.g. , and ). These properties usually guarantee reasonable “richness” of the state space—an assumption needed in developing the theory of quantum logics. In this note we consider these classes of OMLs from the universal algebra standpoint, showing, as the main result, that these classes form quasivarieties. We also illustrate...

Quasiequational theories of flat algebras

Jaroslav Ježek, M. Maróti, R. McKenzie (2005)

Czechoslovak Mathematical Journal

We prove that finite flat digraph algebras and, more generally, finite compatible flat algebras satisfying a certain condition are finitely q -based (possess a finite basis for their quasiequations). We also exhibit an example of a twelve-element compatible flat algebra that is not finitely q -based.

Quasivarieties of pseudocomplemented semilattices

M. Adams, Wiesław Dziobiak, Matthew Gould, Jürg Schmid (1995)

Fundamenta Mathematicae

Two properties of the lattice of quasivarieties of pseudocomplemented semilattices are established, namely, in the quasivariety generated by the 3-element chain, there is a sublattice freely generated by ω elements and there are 2 ω quasivarieties.

Some regular quasivarieties of commutative binary modes

K. Matczak, Anna B. Romanowska (2014)

Commentationes Mathematicae Universitatis Carolinae

Irregular (quasi)varieties of groupoids are (quasi)varieties that do not contain semilattices. The regularization of a (strongly) irregular variety 𝒱 of groupoids is the smallest variety containing 𝒱 and the variety 𝒮 of semilattices. Its quasiregularization is the smallest quasivariety containing 𝒱 and 𝒮 . In an earlier paper the authors described the lattice of quasivarieties of cancellative commutative binary modes, i.e. idempotent commutative and entropic (or medial) groupoids. They are all irregular...

Currently displaying 41 – 60 of 149