Diviseurs premiers de suites recurrentes no lineaires.
A positive integer n is called E-symmetric if there exists a positive integer m such that |m-n| = (ϕ(m),ϕ(n)), and n is called E-asymmetric if it is not E-symmetric. We show that there are infinitely many E-symmetric and E-asymmetric primes.
In a letter written to Landau in 1935, Schur stated that for any integer , there are primes such that . In this note, we use the Prime Number Theorem and extend Schur’s result to show that for any integers and real , there exist primes such that
Introduction. In this note we use the following standard notations: π(x) is the number of primes not exceeding x, while . The best known inequalities involving the function π(x) are the ones obtained in [6] by B. Rosser and L. Schoenfeld: (1) x/(log x - 1/2) < π(x) for x ≥ 67 (2) x/(log x - 3/2) > π(x) for . The proof of the above inequalities is not elementary and is based on the first 25 000 zeros of the Riemann function ξ(s) obtained by D. H. Lehmer [4]. Then Rosser, Yohe and Schoenfeld...