A bound on Kaprekar constants.
Page 1 Next
Anne L. Ludington (1979)
Journal für die reine und angewandte Mathematik
Bodo VOLKMANN, Peter SZÜSZ (1994)
Forum mathematicum
Helmut Hasse, Gordon Prichett (1978)
Journal für die reine und angewandte Mathematik
Juha Honkala (1986)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
Cooper, Curtis N., Kennedy, Robert E. (1986)
International Journal of Mathematics and Mathematical Sciences
K. Matthews, A. Watts (1984)
Acta Arithmetica
Alain Robert (1994)
Elemente der Mathematik
K. Matthews, A. Watts (1985)
Acta Arithmetica
Müller, Tom (2005)
Integers
Arnold Knopfmacher, John Knopfmacher (1987)
Monatshefte für Mathematik
Barat, Guy, Frougny, Christiane, Pethő, Attila (2005)
Integers
Grabner, Peter (1993)
Séminaire Lotharingien de Combinatoire [electronic only]
Jean-Paul Allouche (2008)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
We compare two sets of (infinite) binary sequences whose suffixes satisfy extremal conditions: one occurs when studying iterations of unimodal continuous maps from the unit interval into itself, but it also characterizes univoque real numbers; the other is a disguised version of the set of characteristic sturmian sequences. As a corollary to our study we obtain that a real number in is univoque and self-sturmian if and only if the -expansion of is of the form , where is a characteristic...
Jean-Paul Allouche (2010)
RAIRO - Theoretical Informatics and Applications
We compare two sets of (infinite) binary sequences whose suffixes satisfy extremal conditions: one occurs when studying iterations of unimodal continuous maps from the unit interval into itself, but it also characterizes univoque real numbers; the other is a disguised version of the set of characteristic Sturmian sequences. As a corollary to our study we obtain that a real number β in (1,2) is univoque and self-Sturmian if and only if the β-expansion of 1 is of the form 1v, where v is a characteristic...
Eggleton, Roger B., Galvin, William P. (2002)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Bodo VOLKMANN (1982/1983)
Seminaire de Théorie des Nombres de Bordeaux
François Laubie (1999)
Journal de théorie des nombres de Bordeaux
Let be a prime number. In this paper we prove that the addition in -ary without carry admits a recursive definition like in the already known cases and .
R. Blecksmith, M. Filaseta, C. Nicol (1993)
Acta Arithmetica
Shigeki Akiyama, Taizo Sadahiro (1998)
Acta Mathematica et Informatica Universitatis Ostraviensis
J. Coquet (1983)
Inventiones mathematicae
Page 1 Next