Schinzel's conjecture H and divisibility in abelian linear recurring sequences
We consider Diophantine quintuples a, b, c, d, e. These are sets of positive integers, the product of any two elements of which is one less than a perfect square. It is conjectured that there are no Diophantine quintuples; we improve on current estimates to show that there are at most Diophantine quintuples.
Nous nous intéressons ici essentiellement à l’algèbre de Hadamard des séries formelles. Si des résultats importants ont été obtenus dans le cas d’une variable, il n’en est pas de même dans le cas de plusieurs variables. En effet, beaucoup de problèmes posés restent encore sans réponse. C’est le cas par exemple du problème du quotient de Hadamard, ou celui de la caractérisation des éléments de Hadamard inversibles, ou les diviseurs de zéro, ou encore le problème des multiplicateurs de certains sous-ensembles...
For every , we produce a set of integers which is -recurrent but not -recurrent. This extends a result of Furstenberg who produced a -recurrent set which is not -recurrent. We discuss a similar result for convergence of multiple ergodic averages. We also point out a combinatorial consequence related to Szemerédi’s theorem.
We show that three problems involving linear difference equations with rational function coefficients are essentially equivalent. The first problem is the generalization of the classical Skolem–Mahler–Lech theorem to rational function coefficients. The second problem is whether or not for a given linear difference equation there exists a Picard–Vessiot extension inside the ring of sequences. The third problem is a certain special case of the dynamical Mordell–Lang conjecture. This allows us to deduce...
Melham discovered the Fibonacci identity . He then considered the generalized sequence Wₙ where W₀ = a, W₁ = b, and and a, b, p and q are integers and q ≠ 0. Letting e = pab - qa² - b², he proved the following identity: . There are similar differences of products of Fibonacci numbers, like this one discovered by Fairgrieve and Gould: . We prove similar identities. For example, a generalization of Fairgrieve and Gould’s identity is .