Displaying 141 – 160 of 350

Showing per page

Multiplicative relations on binary recurrences

Florian Luca, Volker Ziegler (2013)

Acta Arithmetica

Given a binary recurrence u n n 0 , we consider the Diophantine equation u n 1 x 1 u n L x L = 1 with nonnegative integer unknowns n 1 , . . . , n L , where n i n j for 1 ≤ i < j ≤ L, m a x | x i | : 1 i L K , and K is a fixed parameter. We show that the above equation has only finitely many solutions and the largest one can be explicitly bounded. We demonstrate the strength of our method by completely solving a particular Diophantine equation of the above form.

Noncirculant Toeplitz matrices all of whose powers are Toeplitz

Kent Griffin, Jeffrey L. Stuart, Michael J. Tsatsomeros (2008)

Czechoslovak Mathematical Journal

Let a , b and c be fixed complex numbers. Let M n ( a , b , c ) be the n × n Toeplitz matrix all of whose entries above the diagonal are a , all of whose entries below the diagonal are b , and all of whose entries on the diagonal are c . For 1 k n , each k × k principal minor of M n ( a , b , c ) has the same value. We find explicit and recursive formulae for the principal minors and the characteristic polynomial of M n ( a , b , c ) . We also show that all complex polynomials in M n ( a , b , c ) are Toeplitz matrices. In particular, the inverse of M n ( a , b , c ) is a Toeplitz matrix when...

Currently displaying 141 – 160 of 350