Representations of integers as sums of primes from a Beatty sequence
This paper has been inspired by the endeavour of a large number of mathematicians to discover a Fibonacci-Wieferich prime. An exhaustive computer search has not been successful up to the present even though there exists a conjecture that there are infinitely many such primes. This conjecture is based on the assumption that the probability that a prime is Fibonacci-Wieferich is equal to . According to our computational results and some theoretical consideratons, another form of probability can...
This paper is a continuation of a recent paper [2], in which the authors studied some Markov matrices arising from a mapping T:ℤ → ℤ, which generalizes the famous 3x+1 mapping of Collatz. We extended T to a mapping of the polyadic numbers and construct finitely many ergodic Borel measures on which heuristically explain the limiting frequencies in congruence classes, observed for integer trajectories.
Let G be a finite abelian group of rank r and let X be a zero-sum free sequence over G whose support supp(X) generates G. In 2009, Pixton proved that for r ≤ 3. We show that this result also holds for abelian groups G of rank 4 if the smallest prime p dividing |G| satisfies p ≥ 13.
We describe all sets which represent the quadratic residues in the sense that R = A + A or R = A ⨣ A. Also, we consider the case of an approximate equality R ≈ A + A and R ≈ A ⨣ A and prove that A is then close to a perfect difference set.
Let Vₙ(P,Q) denote the generalized Lucas sequence with parameters P and Q. For all odd relatively prime values of P and Q such that P² + 4Q > 0, we determine all indices n such that Vₙ(P,Q) = 7kx² when k|P. As an application, we determine all indices n such that the equation Vₙ = 21x² has solutions.
Our previous research was devoted to the problem of determining the primitive periods of the sequences where is a Tribonacci sequence defined by an arbitrary triple of integers. The solution to this problem was found for the case of powers of an arbitrary prime . In this paper, which could be seen as a completion of our preceding investigation, we find solution for the case of singular primes .