A permutations representation that knows what “Eulerian” means.
Mantaci, Roberto, Rakotondrajao, Fanja (2001)
Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]
Tanimoto, Shinji (2006)
Integers
Jang, Lee-Chae, Kim, Won-Joo, Simsek, Yilmaz (2010)
Advances in Difference Equations [electronic only]
Kim, T., Bayad, A., Kim, Y.-H. (2011)
Journal of Inequalities and Applications [electronic only]
M. C. Lettington (2013)
Acta Arithmetica
We study the interplay between recurrences for zeta related functions at integer values, 'Minor Corner Lattice' Toeplitz determinants and integer composition based sums. Our investigations touch on functional identities due to Ramanujan and Grosswald, the transcendence of the zeta function at odd integer values, the Li Criterion for the Riemann Hypothesis and pseudo-characteristic polynomials for zeta related functions. We begin with a recent result for ζ(2s) and some seemingly new Bernoulli relations,...
Krattenthaler, Christian (1999)
Séminaire Lotharingien de Combinatoire [electronic only]
Dil, Ayhan, Kurt, Veli, Cenkci, Mehmet (2007)
Journal of Integer Sequences [electronic only]
Chen, Kwang-Wu (2001)
Journal of Integer Sequences [electronic only]
Andrea Ossicini (2014)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
This paper treats about one of the most remarkable achievements by Riemann, that is the symmetric form of the functional equation for . We present here, after showing the first proof of Riemann, a new, simple and direct proof of the symmetric form of the functional equation for both the Eulerian Zeta function and the alternating Zeta function, connected with odd numbers. A proof that Euler himself could have arranged with a little step at the end of his paper “Remarques sur un beau rapport entre...
Nemes, Gergő (2011)
Journal of Integer Sequences [electronic only]
Olson, F.R. (1966)
Portugaliae mathematica
Kim, T., Jang, L.C., Rim, S.H. (2004)
International Journal of Mathematics and Mathematical Sciences
Chapman, Robin (2005)
Integers
David (1882)
Journal de Mathématiques Pures et Appliquées
Helmut Prodinger (1994)
Mathematica Slovaca
L. Carlitz (1959)
Journal für die reine und angewandte Mathematik
Zhi-Wei Sun, Li-Lu Zhao (2013)
Colloquium Mathematicae
For k = 1,2,... let denote the harmonic number . In this paper we establish some new congruences involving harmonic numbers. For example, we show that for any prime p > 3 we have , , and for any positive integer n < (p-1)/6, where B₀,B₁,B₂,... are Bernoulli numbers, and .
Lengyel, Tamás (2007)
Journal of Integer Sequences [electronic only]
Hermann Schmidt (1975)
Journal für die reine und angewandte Mathematik
R. Lipschitz (1884)
Journal für die reine und angewandte Mathematik