Derived sequences.
In this paper, we study differential equations arising from the generating functions of the generalized Bell polynomials.We give explicit identities for the generalized Bell polynomials. Finally, we investigate the zeros of the generalized Bell polynomials by using numerical simulations.
It is shown that duality triads of higher rank are closely related to orthogonal matrix polynomials on the real line. Furthermore, some examples of duality triads of higher rank are discussed. In particular, it is shown that the generalized Stirling numbers of rank r give rise to a duality triad of rank r.
Cet article traite des endomorphismes de l’algèbre de Hadamard des suites et plus particulièrement de l’algèbre des suites récurrentes linéaires. Il caractérise les endomorphismes continus de l’algèbre des suites et contient, dans le cas d’un corps commutatif de caractéristique nulle, une détermination complète des endomorphismes continus de l’algèbre des suites récurrentes linéaires grâce à la notion nouvelle d’application semi-affine de dans .
In this paper we use the Euler-Seidel method for deriving new identities for hyperharmonic and r-Stirling numbers. The exponential generating function is determined for hyperharmonic numbers, which result is a generalization of Gosper’s identity. A classification of second order recurrence sequences is also given with the help of this method.