On a problem of Frobenius. Alfred Brauer, James E. Shockley (1962) Journal für die reine und angewandte Mathematik
On a problem of Frobenius for an almost consecutive set of integers. Mordechai Lewin (1975) Journal für die reine und angewandte Mathematik
On a variation of the coin exchange problem for arithmetic progressions. Tripathi, Amitabha (2003) Integers
On formulas for the Frobenius number of a numerical semigroup. Frank Curtis (1990) Mathematica Scandinavica
On minimal solutions of Diophantine equations. Henk, Martin, Weismantel, Robert (2000) Beiträge zur Algebra und Geometrie
On powerful numbers. Mollin, R.A., Walsh, P.G. (1986) International Journal of Mathematics and Mathematical Sciences
On the Diophantine equation G n ( x ) = G m ( P ( x ) ) for third order linear recurring sequences. Fuchs, Clemens (2004) Portugaliae Mathematica. Nova Série
On the linear diophantine problem of Frobenius. Ernst S. Selmer (1977) Journal für die reine und angewandte Mathematik
On the linear diophantine problem of Frobenius in three variables. Ernst S. Selmer, Öyvind Beyer (1978) Journal für die reine und angewandte Mathematik
On the non-existence of abelian conditions governing solvability of the - 1 Pell equation. Patrick Morton (1990) Journal für die reine und angewandte Mathematik
On the number of representations of an integer by a linear form. Alon, Gil, Clark, Pete L. (2005) Journal of Integer Sequences [electronic only]
On the set of solutions of the system x 1 + x 2 + x 3 = 1 , x 1 x 2 x 3 = 1 Miloslav Hlaváček (1998) Mathematica Bohemica A proof is given that the system in the title has infinitely many solutions of the form a 1 + a 2 , where a 1 and a 2 are rational numbers.