Parametrization of low-degree points on a Fermat curve
We show that the generalized Fermat equations with signatures (5,5,7), (5,5,19), and (7,7,5) (and unit coefficients) have no non-trivial primitive integer solutions. Assuming GRH, we also prove the non-existence of non-trivial primitive integer solutions for the signatures (5,5,11), (5,5,13), and (7,7,11). The main ingredients for obtaining our results are descent techniques, the method of Chabauty-Coleman, and the modular approach to Diophantine equations.
We determine explicitly the set of algebraic points of degree at most 12 over ℚ on the Fermat quintic. This extends a previous result given by M. Klassen and P. Tzermias (1997), who described the set of algebraic points of degree at most 6 over ℚ.
La méthode de Chabauty elliptique permet de calculer les points rationnels sur une courbe définie sur un corps de nombres lorsque le théorème de Chabauty ne s’applique pas, c’est à dire lorsque le rang de la jacobienne est supérieur au genre de la courbe. Nous exposons cette méthode et nous la généralisons dans de nouveaux cas en écrivant une version explicite du théorème de préparation de Weierstrass en variables. En particulier nous calculons tous les points rationnels d’une courbe de genre...