Definite unimodular lattices having an automorphism of given characteristic polynomial.
The notion of designs in Grassmannian spaces was introduced by the author and R. Coulangeon, G. Nebe, in [3]. After having recalled some basic properties of these objects and the connections with the theory of lattices, we prove that the sequence of Barnes-Wall lattices hold -Grassmannian designs. We also discuss the connections between the notion of Grassmannian design and the notion of design associated with the symmetric space of the totally isotropic subspaces in a binary quadratic space, which...
This paper introduces some methods to determine the simultaneous approximation constants of a class of well approximable numbers . The approach relies on results on the connection between the set of all -adic expansions () of and their associated approximation constants. As an application, explicit construction of real numbers with prescribed approximation properties are deduced and illustrated by Matlab plots.
Let two lattices have the same number of points on each hyperbolic surface . We investigate the case when Λ’, Λ” are sublattices of of the same prime index and show that then Λ’ and Λ” must coincide up to renumbering the coordinate axes and changing their directions.