Strongly modular lattices with long shadow
This article classifies the strongly modular lattices with longest and second longest possible shadow.
This article classifies the strongly modular lattices with longest and second longest possible shadow.
In this paper, we describe the sublattices of some lattices, extending previous results of [Ber]. Our description makes intensive use of graphs.
En utilisant des méthodes de Watson, nous donnons une courte démonstration de la classification (due à Korkine et Zolotareff ) des réseaux parfaits de dimension 5. Des considérations d'indice nous conduisent à nous intéresser à trois classes de réseaux, dont chacune contient précisément un réseau parfait.
On présente deux résultats nouveaux concernant la racine carrée de la codifférente d’une extension faiblement ramifiée de . Le premier, relatif à sa structure galoisienne, s’inscrit dans la stratégie classique développée notamment par Fröhlich et Taylor. Le second, qui concerne le réseau entier unimodulaire associé, est prouvé à l’aide de calculs numériques portant sur des exemples intéressants.
Cet article énumère les réseaux entiers unimodulaires de dimension , vus comme -voisins de . La première partie contient les informations nécessaires pour lire et pour travailler avec les tables. Elle ne contient aucune preuve. La deuxième partie est formée de tables qui contiennent les données numériques pour les réseaux unimodulaires entiers indécomposable de dimension . Un appendice esquisse les preuves des énoncés.
1. Introduction. The properties of euclidean lattices with respect to tensor product have been studied in a series of papers by Kitaoka ([K, Chapter 7], [K1]). A rather natural problem which was investigated there, among others, was the determination of the short vectors in the tensor product L οtimes M of two euclidean lattices L and M. It was shown for instance that up to dimension 43 these short vectors are split, as one might hope. The present paper deals with a similar question...