A notion of diaphony based on p-adic arithmetic
We present a method for constructing almost periodic sequences and functions with values in a metric space. Applying this method, we find almost periodic sequences and functions with prescribed values. Especially, for any totally bounded countable set in a metric space, it is proved the existence of an almost periodic sequence such that and , for all and some which depends on .
The Riemann zeta-function ζ(s) extends to an outer function in ergodic Hardy spaces on , the infinite-dimensional torus indexed by primes p. This enables us to investigate collectively certain properties of Dirichlet series of the form for in . Among other things, using the Haar measure on for measuring the asymptotic behavior of ζ(s) in the critical strip, we shall prove, in a weak sense, the mean-value theorem for ζ(s), equivalent to the Lindelöf hypothesis.