On the distribution of distances between the points of affine curves over finite fields.
A natural number is said to be a -integer if , where and is not divisible by the th power of any prime. We study the distribution of such -integers in the Piatetski-Shapiro sequence with . As a corollary, we also obtain similar results for semi--free integers.
In this paper, we give a new upper-bound for the discrepancyfor the sequence , when and .
Let be an integer part of and be the number of positive divisor of . Inspired by some results of M. Jutila (1987), we prove that for , where is the Euler constant and is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.
In this paper, we are interested in exploring the cancellation of Hecke eigenvalues twisted with an exponential sums whose amplitude is √n at prime arguments.
Let K be a finite Galois extension of the field ℚ of rational numbers. We prove an asymptotic formula for the number of Piatetski-Shapiro primes not exceeding a given quantity for which the associated Frobenius class of automorphisms coincides with any given conjugacy class in the Galois group of K/ℚ. In particular, this shows that there are infinitely many Piatetski-Shapiro primes of the form a² + nb² for any given natural number n.