A character on the quasi-symmetric functions coming from multiple zeta values.
We generalize the partial fraction decomposition which is fundamental in the theory of multiple zeta values, and prove a relation between Tornheim's double zeta functions of three complex variables. As applications, we give new integral representations of several zeta functions, an extension of the parity result to the whole domain of convergence, concrete expressions of Tornheim's double zeta function at non-positive integers and some results on the behavior of a certain Witten's zeta function...
This is an expository article, based on the talk with the same title, given at the 2011 FASDE II Conference in Będlewo, Poland. In the introduction we define Multiple Zeta Values and certain historical remarks are given. Then we present several results on Multiple Zeta Values and, in particular, we introduce certain meromorphic differential equations associated to their generating function. Finally, we make some conclusive remarks on generalisations of Multiple Zeta Values as well as the meromorphic...
We present asymptotic representations for certain reciprocal sums of Fibonacci numbers and of Lucas numbers as a parameter tends to a critical value. As limiting cases of our results, we obtain Euler’s formulas for values of zeta functions.