On a reciprocity law for finite multiple zeta values.
In this paper, we prove multiple analogues of famous Ramanujan’s formulas for certain Dirichlet series which were introduced in his well-known notebooks. Furthermore, we prove some multiple versions of analogous formulas of Ramanujan which were given by Berndt and so on.
We investigate the singularities of a class of multiple L-functions considered by Akiyama and Ishikawa [2].
We define Witten multiple zeta-functions associated with semisimple Lie algebras , of several complex variables, and prove the analytic continuation of them. These can be regarded as several variable generalizations of Witten zeta-functions defined by Zagier. In the case , we determine the singularities of this function. Furthermore we prove certain functional relations among this function, the Mordell-Tornheim double zeta-functions and the Riemann zeta-function. Using these relations, we prove...