A generalization of a theorem of Lekkerkerker to Ostrowski's decomposition of natural numbers
The cross number κ(a) can be defined for any element a of a Krull monoid. The property κ(a) = 1 is important in the study of algebraic numbers with factorizations of distinct lengths. The arithmetic meaning of the weaker property, κ(a) ∈ ℤ, is still unknown, but it does define a semigroup which may be interesting in its own right. This paper studies some arithmetic(divisor theory) and analytic(distribution of elements with a given norm) properties of that semigroup and a related semigroup of ideals....