The asymptotic behaviour of the counting functions of Ω-sets in arithmetical semigroups
We consider an axiomatically-defined class of arithmetical semigroups that we call simple L-semigroups. This class includes all generalized Hilbert semigroups, in particular the semigroup of non-zero integers in any algebraic number field. We show, for all positive integers k, that the counting function of the set of elements with at most k distinct factorization lengths in such a semigroup has oscillations of logarithmic frequency and size for some M>0. More generally, we show a result on...