The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Banach algebra techniques in the theory of arithmetic functions

Lutz G. Lucht (2008)

Acta Mathematica Universitatis Ostraviensis

For infinite discrete additive semigroups X [ 0 , ) we study normed algebras of arithmetic functions g : X endowed with the linear operations and the convolution. In particular, we investigate the problem of scaling the mean deviation of related multiplicative functions for X = log . This involves an extension of Banach algebras of arithmetic functions by introducing weight functions and proving a weighted inversion theorem of Wiener type in the frame of Gelfand’s theory of commutative Banach algebras.

Bornes effectives pour certaines fonctions concernant les nombres premiers

Jean-Pierre Massias, Guy Robin (1996)

Journal de théorie des nombres de Bordeaux

Si p k est le k è m e nombre premier, θ ( p k ) = i = 1 k log p i la fonction de Chebyshev. Nous obtenons de nouvelles estimations et des améliorations des bornes données par Rosser et Schoenfeld, Schoenfeld et Robin pour les fonctions p k , θ ( p k ) , S k = i = 1 k p i , et S ( x ) = p x p . Ces estimations sont obtenues en utilisant des méthodes basées sur l’intégrale de Stieltjes et par calcul direct pour les petites valeurs.

Currently displaying 1 – 2 of 2

Page 1