Sums of nonnegative multiplicative functions over integers without large prime factors I
Soit le -ième nombre premier. Une fonction arithmétique complètement additive est définie sur par la donnée des et la formule , où désigne la...
Let Ω(n) and ω(n) denote the number of distinct prime factors of the positive integer n, counted respectively with and without multiplicity. Let denote the Piltz function (which counts the number of ways of writing n as a product of k factors). We obtain a precise estimate of the sum for a class of multiplicative functions f, including in particular , unconditionally if 1 ≤ k ≤ 3, and under some reasonable assumptions if k ≥ 4. The result also applies to f(n) = φ(n)/n (where φ is the totient...