Numbers representable by five prime squares with primes in an arithmetic progression
We prove that almost all positive even integers can be represented as with for . As a consequence, we show that each sufficiently large odd integer can be written as with for .
Linnik proved, assuming the Riemann Hypothesis, that for any , the interval contains a number which is the sum of two primes, provided that is sufficiently large. This has subsequently been improved to the same assertion being valid for the smaller gap , the added new ingredient being Selberg’s estimate for the mean-square of primes in short intervals. Here we give another proof of this sharper result which avoids the use of Selberg’s estimate and is therefore more in the spirit of Linnik’s...
It is proved that every pair of sufficiently large odd integers can be represented by a pair of equations, each containing two squares of primes, two cubes of primes, two fourth powers of primes and 105 powers of 2.