An application of Pólya’s enumeration theorem to partitions of subsets of positive integers
Let be a non-empty subset of positive integers. A partition of a positive integer into is a finite nondecreasing sequence of positive integers in with repetitions allowed such that . Here we apply Pólya’s enumeration theorem to find the number of partitions of into , and the number of distinct partitions of into . We also present recursive formulas for computing and .