Séries d'Eisenstein et transcendance
In this paper, by considering higher-order degenerate Bernoulli and Euler polynomials which were introduced by Carlitz, we investigate some properties of mixed-type of those polynomials. In particular, we give some identities of mixed-type degenerate special polynomials which are derived from the fermionic integrals on Zp and the bosonic integrals on Zp.
We use the properties of -adic integrals and measures to obtain general congruences for Genocchi numbers and polynomials and tangent coefficients. These congruences are analogues of the usual Kummer congruences for Bernoulli numbers, generalize known congruences for Genocchi numbers, and provide new congruences systems for Genocchi polynomials and tangent coefficients.