-adic analysis and Bell numbers of two variables. (Analyse -adique et nombres de Bell à deux variables.)
The purpose of this paper is to generalize, to certain commutative formal groups of dimension one and height greater than one defined over the ring of integers of a finite extension of , some results on -adic interpolation developed by Kubota, Leopoldt, Iwasawa, Mazur, Katz and others notably for the multiplicative group , and which they used to construct -adic -functions.
We construct -adic -functions (in general case unbounded) attached to “motivic" primitive Hilbert cusp forms as a non-archimedean Mellin transform of the corresponding admissible measure. In order to prove the growth conditions of the appropriate complex-valued distributions we represent them as Rankin type representation and use Atkin–Lehner theory and explicit form of Fourier coefficients of Eisenstein series.