Polynômes irréductibles primitifs à coefficients dans un corps fini
It is shown that the invertible polynomial maps over a finite field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1 it is shown that the tame subgroup of the invertible polynomial maps gives only the even bijections, i.e. only half the bijections. As a consequence it is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if #S = q^(n−1).
For an odd prime p and an integer w ≥ 1, polynomial quotients are defined by with , u ≥ 0, which are generalizations of Fermat quotients . First, we estimate the number of elements for which for a given polynomial f(x) over the finite field . In particular, for the case f(x)=x we get bounds on the number of fixed points of polynomial quotients. Second, before we study the problem of estimating the smallest number (called the Waring number) of summands needed to express each element of...
Classical Kloosterman sums have a prominent role in the study of automorphic forms on GL and further they have numerous applications in analytic number theory. In recent years, various problems in analytic theory of automorphic forms on GL have been considered, in which analogous GL-Kloosterman sums (related to the corresponding Bruhat decomposition) appear. In this note we investigate the first four power-moments of the Kloosterman sums associated with the group SL. We give formulas for the...
We consider Weil sums of binomials of the form , where F is a finite field, ψ: F → ℂ is the canonical additive character, , and . If we fix F and d, and examine the values of as a runs through , we always obtain at least three distinct values unless d is degenerate (a power of the characteristic of F modulo ). Choices of F and d for which we obtain only three values are quite rare and desirable in a wide variety of applications. We show that if F is a field of order 3ⁿ with n odd, and with...
A quasi-permutation polynomial is a polynomial which is a bijection from one subset of a finite field onto another with the same number of elements. This is a natural generalization of the familiar permutation polynomials. Basic properties of quasi-permutation polynomials are derived. General criteria for a quasi-permutation polynomial extending the well-known Hermite's criterion for permutation polynomials as well as a number of other criteria depending on the permuted domain and range are established....
We give a general upper bound for the irrationality exponent of algebraic Laurent series with coefficients in a finite field. Our proof is based on a method introduced in a different framework by Adamczewski and Cassaigne. It makes use of automata theory and, in our context, of a classical theorem due to Christol. We then introduce a new approach which allows us to strongly improve this general bound in many cases. As an illustration, we give a few examples of algebraic Laurent series for which...