Page 1

Displaying 1 – 11 of 11

Showing per page

Rational approximations to algebraic Laurent series with coefficients in a finite field

Alina Firicel (2013)

Acta Arithmetica

We give a general upper bound for the irrationality exponent of algebraic Laurent series with coefficients in a finite field. Our proof is based on a method introduced in a different framework by Adamczewski and Cassaigne. It makes use of automata theory and, in our context, of a classical theorem due to Christol. We then introduce a new approach which allows us to strongly improve this general bound in many cases. As an illustration, we give a few examples of algebraic Laurent series for which...

Répartition modulo 1 dans un corps de séries formelles sur un corps fini

Mireille Car (1995)

Acta Arithmetica

Introduction. Soit q une puissance d’un nombre premier p et soit q le corps fini à q éléments. Une certaine analogie entre l’arithmétique de l’anneau ℤ des entiers rationnels et celle de l’anneau q [ T ] a conduit à étendre à q [ T ] de nombreuses questions de l’arithmétique classique. L’équirépartition modulo 1 est une de ces questions. Le corps des nombres réels est alors remplacé par le corps q ( ( T - 1 ) ) des séries de Laurent formelles, complété du corps q ( T ) des fractions rationnelles pour la valuation à l’infini et...

Currently displaying 1 – 11 of 11

Page 1