The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 7 of 7

Showing per page

On ordered division rings

Ismail M. Idris (2003)

Czechoslovak Mathematical Journal

Prestel introduced a generalization of the notion of an ordering of a field, which is called a semiordering. Prestel’s axioms for a semiordered field differ from the usual (Artin-Schreier) postulates in requiring only the closedness of the domain of positivity under x x a 2 for nonzero a , instead of requiring that positive elements have a positive product. In this work, this type of ordering is studied in the case of a division ring. It is shown that it actually behaves the same as in the commutative...

Currently displaying 1 – 7 of 7

Page 1