Page 1 Next

Displaying 1 – 20 of 369

Showing per page

A Characterization of One-Element p-Bases of Rings of Constants

Piotr Jędrzejewicz (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Let K be a unique factorization domain of characteristic p > 0, and let f ∈ K[x₁,...,xₙ] be a polynomial not lying in K [ x p , . . . , x p ] . We prove that K [ x p , . . . , x p , f ] is the ring of constants of a K-derivation of K[x₁,...,xₙ] if and only if all the partial derivatives of f are relatively prime. The proof is based on a generalization of Freudenburg’s lemma to the case of polynomials over a unique factorization domain of arbitrary characteristic.

A propos de la relation galoisienne x 1 = x 2 + x 3

Franck Lalande (2010)

Journal de Théorie des Nombres de Bordeaux

L’existence d’un polynôme f , irréductible sur un corps k de caractéristique 0 et dont trois racines vérifient la relation linéaire x 1 = x 2 + x 3 , ne dépend que de la paire de groupes finis ( G , H ) G = Gal k ( f ) et H G est le fixateur d’une racine. Le cas régulier ( H = 1 ) est désormais assez bien décrit. On démontre dans ce texte que pour de nombreuses paires ( G , H ) primitives ( H sous-groupe maximal de G ) et en particulier pour toutes celles de degré 50 , la relation x 1 = x 2 + x 3 n’est pas réalisable.En appendice, Joseph Oesterlé démontre que cette...

Currently displaying 1 – 20 of 369

Page 1 Next